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NONLINEAR OSCILLATIONS IN BULK CRYSTALLIZATION PROCESSES 

V. V. Mansurov and I. A. Natalukha UDC 548.01:66.065.5-51 

Nonlinear oscillations generated by losses of stability of steady-state 
bulk crystallization are investigated. 

Heat- and mass-transfer processes, which are used extensively in chemical technology, 
metallurgy, and heat engineering and which result in the formation of particles of a new 
phase, are often accompanied by various kinds of oscillations and fluctuations of the 
characteristic parameters such as the temperature, concentration of the two-phase system, 
supersaturation, etc, [1-4]. These unstable regimes are manifested in diverse ways be- 
cause of the vigorous ongoing development of highly promising technologies that make effec- 
tive use of major departures of the system from equilibrium phase conditions and operate 
with metastable states. The investigation of mechanisms for the changeover of heat- and 
mass-transfer regimes is especially timely in the determination of ways to control 
transient processes, because the onset of instability can have a significant influence on 
the nature and the results of the processes involved. 

In the present article we investigate the laws governing the loss of stability of 
steady-state regimes and the inception of highly nonlinear self-excited oscillatory regimes 
of bulk crystallization from supersaturated solutions or supercooled melts, where the two- 
phase mixture is subjected to intense mixing, and the finished crystals are extracted from 
the system at a rate that depends on their dimensions. 

DERIVATION OF THE EVOLUTION EQUATION 

For definiteness, we shall discuss crystallization from supersaturated solutions. 

The physical mechanism of tlhe formation of self-excited bulk crystallization regimes 
in a metastable medium under steady-state external conditions is described in [I]. The 
principal cause of instability of steady-state crystallization is a highly nonlinear 
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Fig. i. Neutral stability curves g x  = S(R, b )  in the plane 
of the parameters R, gl for Px = 0| values of gx > S(R, b) 
correspond to the stability domains of the steady-state 
regime.~ 

Fig. 2. Comparison of theory (solid curve) and experiment 
[i0] (points) in terms of the oscillation period T ~ along 
the neutral stability curve, b = i. 

dependence of the nucleation frequency on the degree of supersaturation, and this deter- 
mines the fluctuation nucleation limit when a sufficiently high supersaturation level is 
attained. 

Since a polydisperse ensemble of crystals is formed in crystallization and the volume 
of each crystal is much smaller than the volume of the carrier phase, the mass-transfer 
balance equation and the evolution equation for the distribution function f(t, r) of the 
crystals with respect to their radius r are written in the form 

= --P .' dt [(t, r)dr, v =  axrS; (I) 
dt co 3 

�9 r ,  

~--=--. f +v(~) i - -o ,  .--=--f = J  ~ .  (2) 
r = r ,  . CO 

The boundary condition in Eqs. (2) describes the nucleation process; the nucleation fre- 
quency in unit volume J is assumed to be a known function of the relative supersaturation 
and can be determined according to Frenkel'--Zel'dovich theory, Volmer's theory, or Mayer's 
phenomenology. The dependence of the effective extraction rate of crystals from the 
system y on their size can be arbitrary in the context of the ensuing analysis. 

We assume that the crystal growth rate is described by the relation 

dr 1 X (  C--Co I (3) 
dt ~F (r) \ / C o  

Introducing the new variables 

(~Fdr u=  c--c_____._._~o, ~=f~F_~, s =  (4) 
co ~ X(u,) 

(U s 
below), we reduce the highly nonlinear system (1)-(3) to a single evolution equation. 
the variables (4), Eq. (2) and the boundary condition for it take the form 

o____T_~ .k - X ( u )  Oq~ q-~[r(s)lqo=O, ~]~=o s(u---/-) 
at x (u~) as x (u) 

For simplicity, we let s : 0 in the boundary condition for (5) instead of 

"* ~Fdr ( s = .  X(uA 
0 

is the steady-state supersaturation of the system; its existence will be established 
In 

(5) 
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Fig. 3. Characteristic curves 
of slightly nonlinear self- 
excited oscillations: ampli- 
tude squared and frequency 
shift vs. parameter R and 
supercriticality ratio gx/go x -- 
i in the kinetic crystal-growth 
regime for power-law nucleation 
kinetics J = Cun. 

This is fully admissible insofar as the minimum crystal radius r, only slightly exceeds 
the molecular diameter, and the main contribution to mass transfer is from cyrstals of 
radius much larger than r,. Next, setting 

X (u [xl) dx 
a = f f  X(uA , @ = I n  

and t a k i n g  t h e  L a p l a c e  t r a n s f o r m  of  Eq. (5) w i t h  r e s p e c t  to  t h e  v a r i a b l e  s ,  we a r r i v e  a t  
t h e  equa t  ion  

O@p k p ~ p - - l n  J (u [t (a)]) ~ X(u=)Yv =0 ,  (6) 
at x (u [t (~)1) x (u [t (~)l) 

where  % ( ~ ,  p) and rp a r e  t h e  Lap l ace  t r a n s f o r m s  of  t h e  f u n c t i o n s  r  s)  and 7 [ r ( s ) ] .  
Neglecting the term with the arbitrary constant in the general solution of Eq. (6), i.e., 
essentially analyzing the process in the fully developed asymptotic stage after the in- 
fluence of the initial conditions has completely disappeared, we have 

o ~ X (u [t (e)l) X (u [t (~)1) 

Once again taking the Laplace transform of Eq. (7) with respect to the variable ~, we 
obtain 

. ,p ,  = [ in J (u [t (~)]) X (us) Yv ] 1 
X(u[t(a)]) X(u[t(a)l) ~p ,  p'+ p 

Taking the inverse Laplace transforms of p with respect to s and of p' with respect to a in 
succession, we have 

: (u It (~ - =)1) i x (uA v [~ (s - z)] dz 
0 =  In X (u [t (a-- s)]) - - I  --~ i'~-(~-~'~ ~ )  

o r  

J (u [t ((r - -  s)]) exp [ - -  i X  (u=) 7 [r (s = z)-~] dz ]~l [r (s)]. (8) 
f [r (s), t (cr)l = X (u [t'(cr - -  s)l) o X (u [t (or-- z)]) j 

Equation (8) specifies the distribution function of the crystals with respect to their 
radii in implicit form~ since the function o(t) cannot be inverted analytically. However, 
the time scale T of the crystallization process in real systems satisfies the condition; 
~T >> i [where Yo is some characteristic value of the function 7(r)], and so it as 
reasonable to assume that ~ : t. The crystal-radius distribution function in this case 
acquires the form 

,r'l  [ 1 [ (t, r) [u ; exp �9 (r), (9)  
o J x /ur , - -c  ) 

X ( u 3  k [ g X ( u D  

i Wdr 
o X (u=) 
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Fig. 4. Characteristic curves of strong nonlinear 
self-vibrations: a) amplitude A and frequency ~ of 
vibrations with respect to supersaturation u/u s vs 
supercriticality ratio, b = I; R = 0.5; g~ = 2.95; 
w ~ = 1.08; J =Cun; b) shape of substantial non- 
linear self-vibrations. 

If necessary, Eq. (9) can be replaced by relation (8) by a numerical procedure for invert- 
ing the function o(t). 

We note that a finite-dimensional system of ordinary differential equations for the 
moments of the crystal-radius distribution function has been used in several well-known 
theoretical studies [3-7] for the analysis of bulk crystallization, but this system can 
onlybe obtained when the crystal growth rate does not depend on the size of the crystals 
and 7 = const, which corresponds to different residence times of crystals of any radius 
in the apparatus. The second assumption is used in many papers and, on the whole, is 
fairly consistent with the real physical picture; however~ the first assumption is not 
always valid by any means and requires the conformation of definite additional conditions 
in the crystallizer [8]. The advantages of the proposed approach over existing methods are 
obvious in light of these considerations. Using relations (8) or (9), we can easily cal- 
culate the moments of the crystal-radius distribution function (which are global character- 
istics of the process: the mean radius, surface area, and mass of the finished crystals) 
directly for specific functions 7(r), T(r), and X(u), making it possible to solve a broad 
category of problems associated with the implementation of crystallization both in steady- 
state and in transient (time-dependent) regimes. 

Substituting Eq. (8) in (i) and introducing the dimensionless variables O = Yet and 
y' = y / ~ ,  we obtain the evolution integrodifferentlal equation for the relative super- 
saturation 

CoVo d---O-- ~ X ( . t o ( ~ ' . ~ ) l )  ' X ( . [ O ( ~ ' - - z ) l )  . ~ k - ( - ~  ' 

a ' =  X (u Ix]) dx "c = 3,o I �9 (10)  
b X(uD ' ~o X ( u D  

The need to take into account the specific dependences of the kinetics of crystal 
extraction from the volume on the size of the crystals has been indicated in many recent 
papers [7-9] ; this can be a result of technological considerations (the necessity of 
sorting the finished crystals) and also be a departure from the normal operating regime 
of the reactor (clogging of the exit opening). We now give some typical dependences y(r) 
as examples: 

i) Randolph's M-z model [7] 

M, O < r < r l ,  

?= I < M ,  r1<r<r2, (ii) 

I < z < M ,  r ~ r 6  

2) Born model [9] 
al ~ ' =  ; al, a 2 ~ O ,  l ~  l; 

1 + a2r t 

1 + clr t 
�9 c l ,  c ~ O ,  l >  1. 

: 1 + c 2 /  ' 

(12) 
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STABILITY ANALYSIS OF STEADY-STATE CRYSTALLIZATION 

Equation (I0) admits a steady-state solution corresponding to crystallization with 
constant supersaturation and a constant nucleation frequency: 

Q (Us) = 4 a p x  (u.) J (us) ~71fl, 

~ = S e x p [ _ _ ~ 7 , [ r ( . ~ _ z ) l d  z rZ(*) d~" 
o o ~t' lr (})]" 

Setting u = us(l + ~), where ]~] << I, and linearizing Eq. (i0), we obtain the perturb- 
ation evolution equation (we assume from now on that the inequality ToT >> 1 holds) 

d_..~ __ P1~ -[- Rdl~ + (gx - -  RdO g~-~ S ~- (0 - -  ~) exp [-2" ~?' [r (~ - -  z)] d (*) d* 
dO o o [r (T)] 

-~- Rdi ~-i X 

0 o 0 �9 [r (~)1 

in which we have introduced the parameters 

CoVoU~ CoVo J(u~) ' X(u,) 
The spectral analysis of gq. (13) yields the criterion of neutral stability 

i~ - -  P1 q- Rdl + ( g l -  R d l ) a  -1 exp [ - -  im~ - - ? '  [r (~ - -  z)] dz] • 
o o 

J 

• W [r (~)-~ + Rdle -1  [r (r  - -  z)] exp ( - -  ioz) dz exp - -  ? '  [/(T - -  z)] dz - -  = O. 
o o o �9 [r (~)1 

The c o m p l e x  e q u a t i o n  (14)  s p e c i f i e s  t h e  s u r f a c e  o f  n e u t r a l  s t a b i l i t y  i n  t h e  s p a c e  o f  
p a r a m e t e r s  g i ,  dz~ R= P i .  I n f o r m a t i o n  on t h e  f u n c t i o n s  ~ ' ( r ) ,  X ( u ) ,  and T ( r )  i s  n e e d e d  i n  
o r d e r  t o  o b t a i n  s p e c i f i c  r e s u l t s .  As a s i m p l e  exampled  we t a k e  

~' = const, dr _ ~Co u 
dt --  r b--l' (15)  

where 8 and b are kinetic coefficients (b = 1 corresponds to the kinetic regime of crystal 
growth, and b = 2 to diffusion-limited growth). The curves traced by the neutral stability 
surface on the plane of the parameters gz, R is shown in Fig. 1. The comparison of the 
theoretical results with the experimental data [i0] in terms of the oscillation period 
along the neutral stability curve is illustrated in Fig. 2. We note that the case g~ < 0, 
which corresponds to the Tammann effect, has little bearing on applications and will there- 
fore be disregarded here. 

It is evident from Fig. 1 that steady-state crystallization is stable here, i.e., any 
fluctuation of the supersaturation decays exponentially with time, and instability sets in 
only when the ascending branch of the J(u) curve becomes sufficiently steep, despite the 
fact that for gi < S(R, b) a very strong metastability occurs in the system, since the Gibbs number 
G ~ i0 in the indicated domain [the parameters R and gl are proportional to J(u s) and J'(us)Us, 
respectively, with the same proportionality factor]. At the intersection of a neutral 
stability curve with a vertical line for constant R the Gibbs number increases (i.e., 
metastability decreases); however, this is caused by an increase of J'(u s) and is not as- 
sociated with a variation of the nucleation frequency, so that the net effect is to promote 
an increase of instability. Consequently, the physical cause of instability is the highly 
nonlinear dependence of the nulceation rate on the supersaturation; in other words, instabil- 
ity can set in only when a large number of seed crystals are present simultaneously in the 
system, where they promote a diminution of supersaturation during the growth process. 
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NONLINEAR OSCILLATIONS 

We now prove that weakly nonlinear self-excited supersaturation oscillations of small 
relative amplitude occur in the system for a slight ingress into the domain of instability. 

Obviously, the supersaturation perturbations grow exponentially in the instability 
domain in the linear approximation. It is clear, however, that unbounded growth of the 
perturbations does not take place in reality. Exponential growth of the perturbations 
occurs only in the initial stage; very quickly, the perturbations are no longer small, 
and neither do they obey a linear equation. The ensuing analysis shows that the principal 
factor in the stabilization of perturbations and the onset of self-excited oscillations 
during crystallization is the highly nonlinear dependence of the nucleation frequency on 
the supersaturation level. 

Retaining terms up to and including third-order in powers of ~ in Eq. (i0) [ii] and 
taking Eqs. (15) into account, we obtain the equation 

dB PI~ - -  P.~ ~ A._. paBa _]- (gl - -  R) J~ -]- (g2 --  gl + R) Jgo -{- 
.dO 

+ ( g 8  g~+g~-=R)a~  + (gl R) J~, _ [ _ R  J~l -[- 
2 

_~_(g2=_gt_~_R) j1 1 R J~1--  21-{---~-- (gt--~)J~l-~- 

- -  RJ~2 - -  (gl - -  R) Jl2 - -  RJ~ + RJ~3 + Ri + (gl - -  R)~j7o+ 

R o 
+ (g~ gl q- R) ~Jgo + RBJ~, + (gx - -  R) ~Jll "[- ~ BJol - -  R~Jo~2 = 0, (16) 

in which we have introduced the parameters 

Q(~) uks - l  RJ  (~ uks Q(h) dkQ ; j(k) d ~J 
- -  ; gh = ', = = " 

Ph k! Coy k! J (Us) duh duk ' 

jmkn r-~(3/b) ~hl~ .t" ~1o-~ dz ~exp( "r;)~--l-k3/bd~, n, m, k = 1, 2, 3; 
0 0 

J,  = r-'(3/b) S [j'~lo_: dz] [.f B~lo_:dz] exp( 'O"C'+3'bd'l:, 
0 0 0 

(17) 

where F(x) is the gamma function. 

We w r i t e  the  r e l a t i v e  s u p e r s a t u r a t i o n  in  the  Four ie r  s e r i e s  form: 

2 

U--Us[ l +  Z *nexp(ino)O)], *_n----if):, 
R ~ - - 2  

o 

*o ~ @ 1 " - 1  = * ~  = q,  q "" g ~ / g ]  - -  1, 

(18) 

where go I is the value of gt on the neutral stability surface. Substituting Eq. (18) in 
(16) and separating terms with different harmonics, we obtain for expressions for ~o and 
~2 for n = 0.2. The complex equation for n = I, in which the values of r and ~a must be 
included, is used to determine the amplitude squared of the fundamental ~a t and the fre- 
quency shift m -- mo (mo is the frequency of the oscillations on the neutral stability 
surface). Omitting these formidable calculations, we give the results of the calculations 
of q and ~ -- mo in Fig. 3 for Mayer nucleation kinetics J = Cu n [8]. It is evident that 
q > 0 in the entire domain of parameters of the system, corresponding to "soft" destabili- 
zation and Hopf normal bifurcation of the steady-state regime [ii]. As the supercritical- 
ity ratio is increased, the oscillation amplitude increases; and the frequency decreases. 
The time-average supersaturation perturbation <E> = ~o is negative in the instability 
domain and decreases with increasing supercriticality. 
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The self-excited supersaturation oscillations lead to destabilization and oscilla- 
tions of the global characteristics of bulk crystallization, i.e., the average radius, 
surface, and mass yield of the crystals. Calculations according to an equation given in 
the Appendix show that the average yield of the crystals increases a few percent when 
crystallization takes place in the self-excited regime, even for a small supercriticality, 
in comparison with the mass yield in the steady-state regime; this fact has been confirmed 
experimentally in several papers [12]. An analysis also shows that this effect is strong- 
est for the kinetic regime of crystal growth. 

After deep ingress into the instability domain, the theory developed above for weakly 
nonlinear oscillations is invalid. We have analyzed Eq. (i0) numerically for this case. 
We used a modified Aitken--Steffensen iterative method [13], which has ultrafast second- 
order convergence and differs from other iterative procedures in that it does not require 
computation of the derivative of the kernel in each iteration step. It follows from Fig. 4 
that the generated large-amplitude oscillations are far from harmonic. The theory also 
indicates the possibility of self-excitation occurring for deep ingress into the instability 
domain. However, the oscillation frequency is close to zero in the indicated domains. 

We note in conclusion that external periodic actions afford practical tools for the 
intensification and stabilization of unstable bulk crystallization regimes characterized by 
strong nonlinearities during crystal nucleation and growth. For example, periodic admission 
of the feed solution into the system tends to broaden the stability domains of the steady- 
state regime and, close to the instability threshold, can PrOduce resonance effects 
associated with an increase in the mass yield and average size of the crystals [14]. 

APPENDIX 

Here we give an expression for the moments of the distribution function of the 
crystals with respect to their radii in the weakly nonlinear self-excited crystallization 
regime for the kinetics of crystal growth and extraction from the volume (15): 

oo (b~coU~l k/b 
tnh = .I [rkdr ---- \ ' - ' ? - -  / ?-~d (us)F(1 + kb -~) {1 + Ci)o(g;R-~ + kb -~ )+  

0 

+ 2q (g2 R -~ - -  g~R -~ - -  k b - 9  + 2qo-~ [ 1 - -  Re A (co)] + 

+ cos 2o~O (2 (g~R -~ - -  1) [Re cD2 Re A (2r - -  Im  02 Im A (2co)] + o -~ Im (D~ + 

+ 2q Re A (2r [g2R -~ - -  g~R -~ + 1] - -  co-~ Re q)~ Im A (2r - -  

- -  r -~ Im (D~ Re A (2co) - -  2q (g~R -J - -  1) o -~ [Ira A (o) - -  Im  A (2o)] + 

+ q~o -2 [2Re A (co) - -  Re A (2co) - -  1] - -  2qco -~ Im A (2o)) + 

+ sin 2r (2 ( 1 - -  g~R -~) [ Im  q)2 Re A (2~o) + Re tD~ Im A (2r + 

+ o -~ Re cD~ - -  2q (g~R -~ - -  g~R -1 + 1) Im A (20)) + r -~ Im O,  Im A (2o)) - -  

- -  co -1 Re q).. Re A (2r + qr -2 [ Im A (2co) - -  2 I m  A (o)]  + 

+ 2qr -~ (g~R -~ - -  1) [Re A (r - -  Re A (2~o)] - -  2qo~ -~ Re A (2~o)) + 

+ 2Vg-cos  o~O (Re A (o) IgOR -~ - -  11 - -  co -~ I m A (~o)) + 2 l /S-s in  r • 

• ( i ra  A (o)[1 - -  g ~ R - q  - - ~ - ~ R e A ( o )  + ~o-D + . o ( q ) } ,  A ( x )  = (1 + ix) -3 /b .  

NOTATION 

c, solute concentration; co~ thermodynamic-equilibrium concentration; 0, crystal 
density; t, time, r, crystal radius; f(t, r), distribution function of crystals with 
respect to radii; J, j(k), nucleation frequency and its k-th derivative; r,, minimum 
crystal radius; c, n, Mayer nucleation kinetic constants; v, crystal volume; y(r), kinetic 
function for extraction of crystals from volume; Q, mass flow rate; u, dimensionless super- 
saturation level; Us, steady-state supersaturation level; $, dimensionless supersaturation 
perturbation; y'(r), dimensionless rate of crystal extraction from system; O, dimensionless 
time; T, characteristic time scale of the process; ~n' amplitude of n-th harmonic of super- 
saturation perturbation; ~, oscillation frequency; q, amplitude squared of fundamental 
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harmonic of supersaturation perturbation; A, amplitude of highly nonlinear self-excited 
oscillations; G, Gibbs number; mk, k-th moment of crystal-size distribution function. 
The index o signifies that the corresponding quantity is evaluated on the surface of 
neutral stability; angle brackets denote time average; the asterisk denotes complex con- 
jugates. 
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VIBRATIONS AND NONUNIFORM HEATING OF A SHAFT IN A RADIAL BEARING 

Yu. A. Buevich and M. I. L'vov UDC 532.516 

The article examines the problem of vibrations of the axis of a shaft in a 
radial bearing due to the imbalance of the system as a result of nonuniform 
heating of the shaft. 

Trouble-free operation, longer life, and reliability of turbine rotors and rotating 
units of other installations require careful balancing with the object of minimizing the 
level of perturbing forces and moments acting on the plant. In practice it is impossible 
to eliminate these fluctuations completely; as a result, the axis of rotation, and also the 
axes of bearing shafts do not take up a strictly fixed position, instead they vibrate [i]. 
If the random effects on the system are negligibly small, then to such vibrations there 
correspond periodic motions of the point of intersection of the shaft axis with the plane 
of the bearing along some closed path, usually close to elliptical [2]. When the regime 
of rotation changes, it is possible that the characteristic linear dimension of the path 
(the vibration amplitude) abruptly changes; this prevents the normal functioning of fric- 
tion units and may even lead to their destruction, or even to the breakdown of the instal- 
lation itself or some of its parts [3]. It is therefore of interest to find the causes 
of such vibrations and the dependences of their characteristics on the physical and 
regime parameters. 

One of the causes of imbalance of some plant (which would be perfectly balanced under 
isothermal conditions) may be the bending of shafts in bearings due to their thermal 
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